
 1

Using a Multicore Processor for Rover Autonomous
Science

Benjamin Bornstein, Tara Estlin, Bradley Clement, Paul Springer
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract—Multicore processing promises to be a critical
component of future spacecraft. It provides immense
increases in onboard processing power and provides an
environment for directly supporting fault-tolerant
computing. This paper discusses using a state-of-the-art
multicore processor to efficiently perform image analysis
onboard a Mars rover in support of autonomous science
activities.

Techniques for onboard rover-data processing provide
significant mission benefits for both data prioritization and
opportunistic science. These capabilities automatically
analyze collected data (e.g., visual images) onboard a
spacecraft and then use that analysis to either prioritize
collected data for downlink or identify new science
opportunities for collection of valuable science data.
Onboard data analysis is already in use on the Mars
Exploration Rover (MER) mission rovers to autonomously
select and gather new data on interesting rock targets.

One of the key elements of this MER capability is
identifying rocks in MER navigation camera images.
Surface rocks are one of the primary targets for science
investigation on the surface of Mars. Automated
identification of these rocks is a critical element of rover
autonomous science algorithms but is also one of the most
time intensive. To enable better performance on future
missions, this capability has been adapted to the Tilera
TILE64TM multicore processor. This paper discusses how
this adaption was performed as well as presenting results on
performance improvements provided through the use of
multiple cores.1 2

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. AEGIS SYSTEM ..2
3. ROCKSTER ..3
4. TILERA MULTICORE PLATFORM4
5. ROCKSTER PARALLELIZATION ..5
6. RESULTS ...6
8. SUMMARY AND CONCLUSIONS ...8
REFERENCES ..8
BIOGRAPHY ..9

1978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1104, Version 1, Updated October 26, 2010

1. INTRODUCTION

Multicore processors could provide future spacecraft
immense increases in onboard processing performance and
an environment for directly supporting fault-tolerant
computing. As part of a three-year research and technology
development initiative we are investigating the detailed
benefits of onboard autonomy and multicore computing for
future NASA missions.

Long-range driving, increased autonomous operations, and
onboard science have been repeatedly identified as needed
capabilities for many future rover missions, including the
planned 2018 Mars Astrobiology Explorer-Cacher (MAX-
C) Rover Mission and the planned Mars Sample Return
(MSR) Rover Mission. These future missions have
significant distance driving requirements as well as goals
for increased science. Multicore computing will enable the
efficient execution and coordination of rover activities.
Further, the ability to rapidly perform onboard science will
be beneficial to a large class of missions. Other relevant
mission concepts include future missions to Titan, Europa,
Venus and other Mars missions. These missions may have
in-situ and/or orbital spacecraft..

We are adapting three high-level autonomy capabilities for
current and future rover surface missions to a multicore
processor and performing detailed performance evaluations.
We chose each capability for its unique, and
complementary, parallelization challenges. The first
capability is the Rock Segmentation Through Edge
Regrouping (ROCKSTER) rock and target detection
algorithm, which is currently in use onboard the MER
Opportunity rover as a critical part of the larger onboard
science autonomy system, AEGIS (Autonomous
Exploration for Gathering Increased Science) [1].
ROCKSTER has many of the hallmarks of a classic machine
vision algorithm and, as such, is well suited to data
parallelization. We will focus on our experiences adapting
ROCKSTER to the 64-core Tilera TILE64TM multicore
platform [6] throughout most of this paper. The National
Reconnaissance Office’s OPERA program has contracted
with Boeing to develop MAESTRO, a 49-core, radiation-
hardened Tilera-class processor. As such, MAESTRO will
provide a reasonably direct space flight qualification path
for algorithms ported to the Tilera multicore platform.

 2

Over the next two years, we will also adapt a visual texture
and onboard planning and scheduling algorithms to the
Tilera multicore platform. Visual texture is another

machine vision algorithm but one that lends itself even more
easily to task-based parallelism (e.g. one scale-orientation
filter per core). Onboard planning and scheduling is
another enabling mission technology that provides
capabilities for onboard sequence modification and resource
management. However its adaptation to multicore is
challenging since there are multiple ways the underlying
algorithm and computation could be migrated to a multicore
processor.

Section 2 gives an overview AEGIS to provide context for
the ROCKSTER algorithm and also to give a flavor of current
state-of-the-art spacecraft autonomy. Section 3 introduces
ROCKSTER in its original serial form. Section 4 describes
the TILE64TM processor and platform and also its extension
to the space-qualified MAESTRO processor. Section 5
details ROCKSTER parallelization. Section 6 presents
multicore performance results. Finally, Section 7 closes
with a summary, conclusions, and areas of future work.

2. AEGIS SYSTEM

The Autonomous Exploration for Gathering Increased
Science (AEGIS) system provides autonomous deployment
of science instruments that target specific terrain features
[1]. A number of rover remote sensing instruments, such as
the MER Mini-TES spectrometer, have a very narrow field-
of-view and thus require selection of specific focused
targets for sampling. Selecting targets for these instruments
by mission personnel on Earth is currently a lengthy
process. Typically operators will manually identify the
targets in images that have already downloaded on a
previous sol (Martian day). These context images are
collected with wide field of view (FOV) cameras such as
the MER navigation cameras, which have a 45 degree FOV,
or the MER panoramic cameras in a full-frame low-
resolution (single filter) mode, using a 16 degree FOV.
After reaching an end-of-day location, the rover performs
only untargeted data collection until the context images can
be analyzed and new measurement commands uplinked. At

Figure 1 – AEGIS Process Pipeline

When AEGIS is sequenced, the above series of steps is executed onboard the MER Opportunity rover. Parameters
can be set during ground command sequencing to specify navigation camera pointing, the “target rock signature”
(e.g., rocks of large size and low albedo), and settings for the panoramic camera (e.g., what filter set to use).
ROCKSTER is the first AEGIS data processing step (target dection, second block) and is thus critical for all
subsequent AEGIS operations. As the most computationaly intensive aspect of AEGIS, ROCKSTER is a prime
candidate for multicore parallelization.

 3

best this will happen on the next sol, but it may never
happen if it is decided the rover should immediately
proceed to a new location due to other goals or engineering
constraints.

By analyzing image data onboard, AEGIS can
autonomously select targets for these instruments and
execute a set of measurement activities. These techniques
could be used, for example, on the Mars Science Laboratory
(MSL) mission to select targets for the ChemCam
spectrometer instrument to sample at the end of a long rover
drive. For MER AEGIS has demonstrated taking additional
measurements with the panoramic camera in a quarter-
frame high-quality (multiple filter) mode, which uses a 4
degree FOV.

AEGIS is run as part of the MER onboard flight software.
All AEGIS components run onboard the MER 20 MHz
RAD6000 flight processor, which has an early PowerPC
instruction set, with 128 MB of RAM and 256 MB flash
memory. AEGIS was required to run using less than 4 MB
of RAM to ensure other onboard processes were not
impacted.

AEGIS was originally developed as part of a large
autonomous science framework called OASIS (Onboard
Autonomous Science Investigation System) [2]. OASIS is
designed to operate onboard a rover identifying and reacting
to serendipitous science opportunities. OASIS analyzes data
the rover gathers, and then, using machine learning
techniques, prioritizes the data based on criteria set by the
science team. This prioritization can organize data for
transmission back to Earth or search for specific targets
specified by the science team. If one of these targets
appears, the system attempts to act on the new science
opportunity by taking new instrument measurements. The
AEGIS technology focuses on this second task of using
onboard data analysis to acquire new instrument data on
science targets, typically rocks, which have been identified
in an opportunistic fashion after a drive.

AEGIS performs seven major steps to autonomously
acquire new data on an interesting science target. These
steps are shown in Figure 1 and described below:

1. Acquire an image with the MER navigation
camera: Scientists and other sequence team members select
image parameters, such as the pointing direction and
resolution, during the AEGIS sequencing process. The
navigation camera is typically pointed at a terrain area
where potential science targets may be in view.

2. Analyze the navigation camera image for potential
terrain targets: Targets for AEGIS typically correspond to
rocks. AEGIS uses the ROCKSTER algorithm to look for
intensity edges in grayscale imagery. This algorithm is
further detailed in Section 3.

3. Extract relevant target features: AEGIS calculates
a set of target features (or properties) for each candidate
rock. These properties include measures of size, albedo
(reflectance), and shape.

4. Prioritize targets and select top target: This
component uses a prioritization algorithm to analyze rock
property data and determine a top candidate. Scientists
provide a “target rock signature” in the command sequence.
 This signature specifies what property values are of interest
in the local terrain. Example signatures are “high albedo,”
“round shape,” “large rocks with low albedo,” etc.

5. Determine 3D target pointing requirements: After
identifying the best scoring candidate rock, AEGIS selects a
center point on the target using an inscribed circle method.

6. Point remote sensing instrument: AEGIS points
the panoramic cameras at the new target using the resulting
center point.

7. Acquire new data: AEGIS then acquires additional
data with the panoramic cameras. The ground sequencing
team can select the exact filters and other imaging
parameters to use for each individual run. Typical command
sequences take a quarter-framed, multiple filter image with
both left and right cameras. The rover downlinks these
opportunistic images with other standard data products.

3. ROCKSTER

To identify potential targets, primarily rocks, of interest, the
AEGIS system employs the Rock Segmentation Through
Edge Regrouping (ROCKSTER) algorithm [3]. This section
provides an overview of the target detection algorithm in its
original serial form. Section 5 details the parallelization of
the algorithm on the Tilera TILE64TM.

ROCKSTER focuses on the intensity of edges in grayscale
imagery and connecting them to form closed contours.
Existing MER rover engineering instrument packages and
compute resources drove the choice of input data format
and the level of processing applied to images. The MER
navigation cameras produce 1024x1024 grayscale images at
12 bits per pixel [4]. Navigation camera images are quick
to collect (30 seconds) and are acquired frequently during
rover drives. As previously described, the MER compute
element is a RAD6000 flight processor capable of executing
20 millions of instructions per second (MIPS). The entire
AEGIS system, and in particular the ROCKSTER subsystem,
is designed to operate efficiently on this processor.
Efficient operation includes sharing compute resources with
the always-running rover flight software, which is
responsible for vehicle health and safety, telemetry, and
communication.

 4

ROCKSTER locates edges in an image of the terrain taken by
one of the navigation cameras using a process similar to the
well-known Canny edge detection algorithm [5]. In
particular, the input image is first smoothed, using a 5x5
Gaussian kernel, to reduce the detection of small, spurious
edges. Then central difference kernels are used to estimate
the intensity gradient in the horizontal and vertical
directions. Ridges in the intensity gradient are linked
together using non-maximum suppression, hysteresis
thresholding, and edge-following to produce a set of
contours.

Unfortunately, this initial set of contours does not directly
provide a usable segmentation of the rocks from the
background due to various problems, including: (1)
spurious contours from the sky-ground boundary (horizon
line), texture within individual rocks, and texture present in
the background, (2) incorrect linking choices at the
junctions between contours, (3) and unclosed contours
around an object due to gaps in the gradient information
(for example, areas along the rock boundary where the rock
intensity and background intensity are too close to reliably
separate). ROCKSTER attempts to resolve these problems by
splitting the initial contours into low-curvature fragments.
A gap-filling mechanism is then applied to add new contour
fragments between existing fragment endpoints. The final
step is to regroup the edge fragments into coherent
contours, which is accomplished through background
flooding. Conceptually, water is poured into the image
from the sides but the water is not allowed to cross over any
edge fragments; thus, regions that are totally enclosed by
edge fragments remain “dry” while other areas become
“wet.” Extracting contours around the dry areas yields the
final rock segmentation (Figure 2).

Figure 2 – ROCKSTER (Serial)

ROCKSTER operates on grayscale intensity images by
performing Canny-like edge detection and linking,
followed by salient point determination, splitting, and
gap-filling. To remove salt-and-pepper noise,
morphology operations are performed on flood-filled
binary mask image. Final rock and other target
contours are extracted from this binary image.

4. TILERA MULTICORE PLATFORM

Hardware

The Tilera TILE64TM runs at 750 MHz and has a parallel
architecture with 64 processing elements (PEs) arranged in
an 8x8 grid. Each PE is a full-featured processor, with a 32-
bit arithmetic logic unit and a three-way Very Long
Instruction Word (VLIW) architecture allowing up to three
instructions per cycle. A single PE contains eight kilobytes
of instruction L1 cache, eight kilobytes of data L1 cache,
and 64 kilobytes of combined L2 cache. The cache
coherency mechanisms on the TILE64TM also allow for a
virtual L3 cache, where each PE can access the contents of
any other PE’s L2 cache. Each PE also contains its own
Direct Memory Access (DMA) engine and Translation
Lookaside Buffer (TLB) allowing memory virtualization
and the ability to run a modern operating system on each
core. Processing elements are connected to their four
nearest neighbors by five data channels. There are four
external double data rate (DDR2) memory channels, and
each processor can access external memory directly without
explicit user code to transfer messages. The external
memory architecture is monolithic and flat, as a specific
memory location has the same physical address on every
PE. The processor also includes multiple input/output (I/O)
ports, including two Peripheral Component Interconnect
Express (PCIe) interfaces, multiple Serial/Deserializer
(SERDES) interfaces, General Purpose I/O, and Xilinx 10
Gigabit Attachment Unit Interface (XAUI). [6]

For this study, an off-the-shelf evaluation board from Tilera
was used. The evaluation board was a full-length PCIe
form factor board containing a TILE64TM processor, two
gigabytes of DDR2 random access memory (RAM), a PCIe
interface, and all the high speed interfaces brought out to
connectors. The gigabit Ethernet interface is brought out
through a 12 port gigabit Ethernet switch. There is also an
on-board non-volatile RAM that allows the board to run as
either a daughtercard in a desktop system, or as a standalone
single board computer booting into Linux.

Development environment

Tilera provides a software architecture based on Linux and
the GNU toolchain. No changes were required to compile
the ROCKSTER algorithm for the Tilera as a non-parallel
application. The toolchain includes the standard GNU C and
C++ compilers as well as all debugging, profiling, and
object manipulation tools. The development system also
includes a full-featured Linux based operating system with
all of the standard libraries. Any application written for a
Linux system can be simply re-compiled and can run on the
Tilera system with little or no change. A straightforward
compile of the original code, however, produced a binary
file capable of running on only a single Tilera processing
element. The existing ROCKSTER code base had to be
rewritten to make use of the Tilera architecture and meet the
runtime requirements. [7]

 5

Space Flight Qualification

The National Reconnaissance Office (NRO) has for several
years funded the OPERA program to develop MAESTRO, a
radiation hardened by design version of the TILE64TM with
additional features such as a dual precision IEEE-754
floating-point unit and hardened I/O features. The project is
mature, and is currently testing MAESTRO, with a schedule
to complete a 49-core version by the end of 2010.

The MAESTRO processor is currently projected to run at
300 MHz as opposed to the COTS 750 MHz. Inclusion of
the IEEE-754 floating-point hardware unit will compensate
for part of the clock speed discrepancy between the
TILE64TM and MAESTRO processors. The Tilera
TILE64TM uses software-emulated floating-point. While the
issues of floating-point and clock speeds could have an
impact on the ROCKSTER performance numbers presented in
Section 6, as we have explained in Section 5, we have made
a significant effort to reduce ROCKSTER’s use of floating-
point operations, leaving only a difference in clock speed
between the two processors.

5. ROCKSTER PARALLELIZATION

ROCKSTER presents many possible avenues for
parallelization. In this section, we describe the
parallelization approaches we considered, their motivation,
and respective tradeoffs. After each approach is outlined,
we provide implementation details. In the next Section we
present our performance findings for our preferred
approach.

One possible parallelization strategy is quite general and
requires no algorithm modifications whatsoever. The MER
(and future) rovers’ camera hardware can acquire images
much faster than onboard software can process them. With
operating system level process (or thread) partitioning for
multicore, it is relatively easy to run a new and separate
instance of ROCKSTER on an idle core whenever a new
image is acquired. In the case of a MER rover, a navigation
camera image has a 45 degree FOV and requires about 30
seconds to acquire. Therefore, a full 360 panorama could
be analyzed for rocks of interest using only eight of the
TILE64TM 64 cores in four minutes plus the amount of time
required for ROCKSTER to execute on a single processor
core. The approach applies equally well to other onboard
cameras. For instance, the high-resolution MER panoramic
camera has a 16 degree FOV and a filter wheel to image at
multiple wavelengths. While we implemented this type of
parallel processing on the TILE64TM, the scaling achieved
exactly matches the theoretical optimum, and therefore is
not particularly interesting. We were more interested in
understanding what benefits could be gained from a deeper
algorithmic parallelization.

Moving-up the parallelization sophistication scale, the next
seemingly simple strategy leverages fine-grained data

parallelism. The smoothing, edge detection, and
morphology operations at the heart of ROCKSTER are
agnostic to the content of the image and more importantly,
the image size. Therefore, it is quite natural to divide an
image into subimages and process each subimage through
the major phases of ROCKSTER on a separate core (Figure
3). What distinguishes this approach from the one
previously described is that the ROCKSTER is cognizant of
the parallelization and is therefore responsible for dividing
the image into subimages, assigning subimages to each
core, and aggregating rock detections after each subimage
has been processed. Such tight algorithmic parallelism
offers opportunities for load-balancing (e.g. subimages
containing mostly sky will require less processing overall)
and is required to address more challenging implementation
issues like connecting rock contours that span subimage
boundaries. This latter issue requires communication
among multiple cores.

The previous two strategies have both emphasized data
parallelism. Indeed, our choice of ROCKSTER was
motivated partly by its natural fit to a data-parallel
algorithm decomposition and our desire to gain experience
with data parallelism in a multicore environment. Still, we
would be remiss if we did not at least mention the
possibility of a task-parallel decomposition. The ROCKSTER
edge detection algorithm is amenable to a systolic-array like
computation where the Gaussian smoothing kernel and
gradient edge kernels are decomposed into individual pixel-
level filters run on each core. For instance, edge detection,
although currently performed with a central difference
operator, could be decomposed into separate Sobel
horizontal and vertical kernels and run in parallel. While
we have begun to investigate this parallelization strategy,
our work in this area is still in-progress.

Figure 3 –ROCKSTER (Parallel)

Parallel ROCKSTER divides the input image into
subimage strips or tiles and runs the major phases of
ROCKSTER on each core. Challenges include choosing
optimal subimage sizes, allocating to cores (load-
balancing), and communication of contours across cores
during edge linking.

Implementation

As Figure 3 depicts, images may be split into either
subimage strips or tiles. Dividing the input images into

 6

strips required very few changes to ROCKSTER image
kernels as they are optimized to work across image columns
and images are stored internally in row-major (row pixels
contiguous) format. However, we quickly discovered that,
in practice, the long horizontal subimages cut across far too
many rock boundaries when more than eight cores were
used.

Parallel ROCKSTER relies on the Message Passing Interface
(MPI) [8] for communication across cores. The MPI
package was created specifically for Tilera and MAESTRO
by USC’s ISI East as part of the OPERA program. At a
low-level, core-to-core communication is accomplished by
using Tilera’s iLib (supported, but deprecated) or TMC C
programming libraries. ISI’s MPI is a particularly efficient
implementation layered on top of the TMC library.

Parallel ROCKSTER can utilize either a shared memory
model or a separate partition of memory per core. Shared
memory serves only to reduce the initial overhead
associated with MPI data passing. At the level of
implementation, ROCKSTER image operations are restricted
to the subimage assigned to that core. For shared memory,
we use a TMC application programming interface (API) call
to receive an initial pointer to shared memory. From then
on, all application logic treats the pointer as a vanilla C
pointer; no special access APIs are required. We have not
studied the tradeoffs in shared versus local memory.
Similarly, we have not focused on load balancing with
respect to the four memory ports on the Tilera chip (each
port is assigned to a specific subset of cores). As our initial
results indicate, optimizing memory access patterns is
worthy of further study.

Floating-Point Operations

Our initial port of serial ROCKSTER to single Tilera
TILE64TM core was unexpectedly slow. That is, runtime
was not commensurate with the 750 MHz per-core clock
speed. As part of their standard development environment,
Tilera has ported the open-source oProfile runtime profiling
tool to their platform. We used oProfile to investigate the
cause of the slow runtime. The culprit was ROCKSTER’s
heavy use of floating-point operations.

As mentioned previously Tilera processors do not possess
floating-point hardware. Instead all floating-point data
types and operations are emulated in software. Tilera’s
customized GCC-based development tool chain makes
floating-point software emulation completely transparent to
software developers. The drawback, of course, is the
hidden complexity of software emulation can come at the
cost of performance.

In the case of ROCKSTER, the software-emulated floating-
point performance hit was extreme. ROCKSTER spent nearly
75% of its TILE64TM single-core runtime performing
floating-point operations in software. Since the emulation

is CPU-bound, we were concerned any performance and
scaling numbers obtained after ROCKSTER parallelization
would be skewed and not directly comparable to the
radiation hardened 49 core MAESTRO processor, which
will contain a floating-point coprocessor per core. As a
result, we made a decision early on in our development to
convert ROCKSTER to integer operations and data types
where possible. This effort was particularly time
consuming but paid dividends in the end. After conversion,
ROCKSTER now spends less-than 10% of its total TILE64TM
runtime performing floating-point operations in software.

6. RESULTS

In this Section we present overall performance and scaling
numbers for both serial and parallel ROCKSTER across a
large, representative set of MER navigation camera images.

As part of the AEGIS development effort, we curated a set
of 116 MER navigation camera images from the mission’s
surface operation. The images form a representative sample
of Martian terrain types encountered by the Spirit and
Opportunity rovers and are classed according to the
predominant geologic feature displayed in the image (e.g.
cobbles, outcrop, and wind-swept dunes). The original
purpose of the image set was to tune AEGIS parameters
prior to surface operations. Thereafter the images and
corresponding rock detections were the basis of a regression
test set. This same set of images was used for both serial
and parallel ROCKSTER to assess overall performance and
scaling with increasing numbers of processor cores.

Floating-Point versus Integer Operations

The conversion of the majority of ROCKSTER’s floating-
point operations to primarily integer-only operations
reduced the average TILE64TM single-core runtime by an
average of five fold (Figure 4, images are ordered by
complexity). The TILE64TM does not have hardware
accelerated floating-point, whereas the space-flight
qualified MAESTRO processor contains a floating-point
coprocessor per core. In order to ascertain how parallel
ROCKSTER performance on TILE64TM would map to
MAESTRO hardware, factoring-out the contribution of
CPU-bound, software-emulated floating-point operations
was essential.

 7

Figure 4 – ROCKSTER Floating-Point vs. Integer

The conversion of the majority of ROCKSTER’s floating-
point operations to primarily integer operations reduced
single-core TILE64TM runtime by an average of fivefold.
 Each point along the x-axis represents a specific MER
navigation camera image and is ordered by increasing
runtime. The y-axis is runtime in seconds.

Parallel Performance and Scaling

We used the MER navigation camera regression test set
described previously to assess both the overall performance
of parallel ROCKSTER and the scaling achieved with
increasing numbers of cores. Figure 5 shows runtimes for
1, 2, 4, 8, 16, and 32 cores, with images ordered by
complexity. Table 1 shows both the average performance
increase over a single core and the average runtime. For 32
cores, parallel ROCKSTER achieved nearly a 10-fold increase
in runtime performance.

Figure 5 – Parallel Integer ROCKSTER Runtimes

Parallel Integer ROCKSTER runtimes for 1, 2, 4, 8, 16,
and 32 cores operating on image strips are plotted
above. The x-axis represents a specific MER navigation
camera image and is ordered by increasing runtime.
The y-axis is runtime in seconds.

Table 1 – ROCKSTER FtesRuntimes and Speedup Factors

Number of Cores
 1 2 4 8 16 32
Average speedup
factor per image
(versus single core)

1 1.8 3.3 5.5 8.0 9.7

Average runtime,
all 116 MER
Navcam images

2.9
s

1.6
s

0.9
s

0.5
s

0.4
s

0.3
s

Parallel Integer ROCKSTER average speedup factor
compared to a single core (first row) and average
runtime across all 116 MER navigation camera images
in our regression test set (second row). For 32 cores,
parallel ROCKSTER achieved nearly a 10-fold increase in
runtime performance.

The runtimes for parallel ROCKSTER exhibit an interesting
jagged structure from one run to the next after the 80th
image. The x-axis is ordered by runtime, which is
proportional to the overall complexity of the scene in terms
of total number of edges. With increasing scene
complexity, and smaller subimages, ROCKSTER is allowed to
find a greater number of potential targets in some
subimages. This is due to an intrinsic limit in the total
number of targets ROCKSTER can track at any one time.
This limit is a vestige of the memory constraints of the
MER rovers. After a certain scene complexity threshold is
passed, the number of targets found per subimage surpasses
the intrinsic limit, which leads to greater variability in
runtimes. For assessing only scalability, not overall
performance, it is best to ignore the runtime variability past
the 80th image. We mention this detail here only to
illustrate one of the many subtle, algorithm-specific issues
that are often encountered during parallelization and
scalability studies.

An order of magnitude decrease in processing time certainly
speaks to the benefits of multicore processing for this and
similar onboard autonomy applications. The performance
improvement is more dramatic when compared to current
ROCKSTER runtimes on the surface of Mars. With a full,
always-running flight software load, ROCKSTER often takes
between 10–15 minutes to run on the MER RAD6000 20
MIPS processor. Utilizing half of the available TILE64TM
cores (e.g. reserving the remaining cores for other flight
software tasks), this runtime is reduced to 0.3 seconds.
Since the MAESTRO processor will operate at 40% the
clock speed of the TILE64TM, it may be appropriate to scale
reported runtimes by a factor of 2.5.

 8

The performance gains we achieved through ROCKSTER
parallelization are impressive, but still fall short of the
theoretical optimum. Figure 6 shows ideal versus actual
speedup as a function of cores. The achieved speedup curve
suggests ROCKSTER performance asymptotes at
approximately 10-fold. While we have not fully
investigated the reason for actual versus theoretical
performance discrepancy, our initial profiling suggests both
memory and cache bottlenecks. As part of MAESTRO tool
development program, several TILE64TM/MAESTRO
memory and cache profiling tools are available. Hopefully
these tools will prove value in testing our performance
bottleneck hypothesis.

Core-to-Core Communication

Image data decomposition is a natural parallelization
strategy for many machine vision applications. While
ROCKSTER is no exception, parallelization is not without its
challenges. Maintaining contour coherency across
subimage boundaries, and therefore cores, is required to
maximize rock detections. This is especially true for large
rocks, which tend to be scientifically interesting, yet are
more likely to be divided among multiple subimages. We
have not completed an implementation of ROCKSTER that
perfectly preserves rock edge contours across subimages.
However, we have assessed the communication overhead
required for parallel ROCKSTER to transfer edge information
from one core to its neighbor. Figure 7 shows messages per
image, across number of cores. Although not shown, the
messages required for image strips (as opposed to tiles) is
three times greater on average. This finding is consistent
with our empirical discovery that long horizontal subimages
cut across far too many rock boundaries when more than
eight subimages are used. The Tilera architecture is such
that data can be sent from one core to its neighbor in a few
clock cycles. Thus, we expect the impact of core-to-core
communications to be negligible, even for the most
demanding Martian terrains.

Achieved vs Ideal Speedup

1

10

100

1 2 4 8 16 32

Number of Tile 64 Cores

S
p

ee
d

u
p

Ideal Speedup

Achieved Speedup

Figure 6 – ROCKSTER Speedup versus Ideal

Parallel Integer ROCKSTER average speedup versus the
ideal speedup is plotted above. The achieved speedup
curve suggests ROCKSTER performance asymptotes at
approximately 10-fold. Memory and cache bottlenecks
are likely culprits, though investigation is ongoing.

8. SUMMARY AND CONCLUSIONS

We are adapting three high-level autonomy capabilities for
current and future rover surface missions to a multicore
processor and performing detailed performance evaluations.
 We chose each capability for its unique, and
complementary, parallelization challenges. The first
capability is the ROCKSTER rock and target detection
algorithm, which is currently in use onboard the MER
Opportunity rover as a critical part of the larger AEGIS
onboard science autonomy system. ROCKSTER has many of
the hallmarks of a classic machine vision algorithm and as
such, is well suited to data parallelization. By parallelizing
for the TILE64TM multicore platform, we have made a
significant step towards flight qualifying the code for the
radiation hardened 49-core MAESTRO processor based on
the same Tilera architecture.

After converting ROCKSTER to mostly integer operations, in
order to cope with the lack of floating-point hardware on
the TILE64TM, we observed an approximately 10-fold
decrease in average algorithm runtime at a maximum of 32
cores. However, compared to the ideal performance
improvement with perfect scaling, ROCKSTER performance
falls short. We suspect this is due to memory access
patterns and inefficient use of cache, both of which are
currently under detailed investigation. Communicating
edge information from one core to its neighbor is
challenging from an implementation perspective, but initial
results indicate the runtime impact will be minimal.

 9

REFERENCES

[1] T. Estlin, B. Bornstein, D. Gaines, D.R. Thompson, R.
Castaño, R.C. Anderson, C. de Granville, M.C. Burl, M.
Judd, and S. Chien, “AEGIS Automated Targeting for the
MER Opportunity Rover,” 10th International Symposium
on Artificial Intelligence, Robotics and Automation in
Space (iSAIRAS), September 2010.

[2] R. Castano, T. Estlin, R. C. Anderson, D. Gaines, A.
Castano, B. Bornstein, C. Chouinard, M. Judd, “OASIS:
Onboard Autonomous Science Investigation System for
Opportunistic Rover Science,” Journal of Field Robotics,
Vol 24, No. 5, May 2007.

[3] M.C. Burl, “Rockster: Rock Segmentation Through Edge
Regrouping,” JPL Internal Memo B-0120.

[4] Maki, J. N., et al., “The Mars Exploration Rover
engineering cameras,” Journal of Geophysical Research,
108(E12), 8071, 2003, doi:10.1029/2003JE002077.

 [5] J. Canny, “A Computational Approach to Edge
Detection,” IEEE T-PAMI, vol. 8, pp. 679-698, 1986.

[7] Tilera Corporation, “Tile Processor Architecture
Overview,” Doc #UG100 Release 1.0, October 2007.

[6] Tilera Corporation, “Multicore Development Environment
User Guide,” Doc #UG201 Release 1.2, February 2008.

[8] M. Kang, E. Park, M. Cho, J. Suh, D.-I. Kang, and S. P.
Crago “MPI Performance Analysis and Optimization on
TILE64TM/Maestro,” Workshop on Multicore Processors
for Space – Opportunities and Challenges (held in
conjunction with SMC-IT), Pasadena, CA, July 2009.

BIOGRAPHY

Ben Bornstein is a senior member of the
Machine Learning and Instrument Autonomy
group at the Jet Propulsion Laboratory in
Pasadena, CA. He has over 10 years
experience in developing onboard autonomy
software for spacecraft and instruments. Ben

led the instrument flight software and onboard autonomy
software efforts for the Vehicle Cabin Atmosphere Monitor
(VCAM), a GC/MS instrument currently monitoring the
crew cabin atmosphere onboard the International Space
Station (ISS). He led the development of the onboard
pattern recognition software for JPL’s most recent
Electronic Nose (ENose). Ben is currently a technical lead
for the AEGIS Project, which is providing new automated
targeting technology for the MER rovers. He helped
develop the MER cloud and dust-devil detectors, an

atmospheric science autonomy technology uplinked to the
MER rovers in 2006. Ben enjoys bringing machine
learning techniques and considerable hacking
(programming) skills to bear to solve problems in geology,
remote sensing, chemistry, bioinformatics, and systems
biology. Ben received a B.Sc. in Computer Science from the
University of Minnesota Duluth in 1999.

Tara Estlin is a senior member of the Artificial
Intelligence Group at the Jet Propulsion
Laboratory. She has over 10 years of
experience in developing spacecraft autonomy
software. A primary goal of these efforts is to
support onboard sequencing and opportunistic

science handling for future rover missions. She is currently
leading the AEGIS Project, which is providing new
automated targeting technology for the MER rovers. Dr.
Estlin is alsopresently a rover driver for the Mars
Exploration Rover (MER) mission where she is responsible
for sequencing drive and arm deployment commands for the
MER Spirit and Opportunity rovers. She holds a B.S. in
computer science from Tulane University and a Ph.D. in
computer science from the University of Texas at Austin.

Brad Clement is a senior member of the
Artificial Intelligence Group at the Jet
Propulsion Laboratory in Pasadena, CA. He
received a bachelor degree in computer
engineering from the Georgia Institute of

Technology and M.S. and Ph.D. degrees in computer
science and engineering from the University of Michigan,
Ann Arbor. His interests include artificial intelligence,
planning, scheduling, multiagent coordination, robotics,
abstraction, execution, distributed systems, real-time
systems, integrated AI, control architectures, and AI in
games.

Paul Springer is a senior researcher in JPL’s High
Capability Computing and Modeling group. He has very
broad experience in developing and modifying applications
to run on parallel hardware, as well as writing simulators
of advanced parallel computers, such as the IBM BG/L
and advanced processor-in- memory architectures.
He has spent most of the past two years working with a
TILE64TM development system, modifying applications to
run on it, and analyzing their performnce. He has filed 20
NASA new technology reports, and authored or co-authored
over 20 papers, as well as a book.

 10

